Bendabermassa m mula-mula berada di puncak bidang miring dan memiliki energi potensial Benda kemudian meluncur dan sampai di titik P. Energi kinetik dimiliki benda saat di titik P adalah . RM R. Manzilah Master Teacher Mahasiswa/Alumni UIN Syarif Hidayatullah Jawaban terverifikasi Jawaban jawaban yang tepat adalah D. Pembahasan Diketahui:
Artikel ini membahas tentang kumpulan contoh soal yang berkaitan dengan gerak benda di bidang miring beserta pembahasannya. Bidang miring merupakan suatu bidang datar yang memiliki sudut kemiringan tertentu terhadap arah horizontal. Pada benda-benda yang terletak di atas bidang miring, maka gaya berat benda tersebut selalu memiliki dua komponen, yaitu komponen gaya berat pada sumbu-X dan komponen gaya berat pada sumbu-Y. Konsep yang kita gunakan untuk menyelesaikan soal tentang gerak benda di bidang miring adalah konsep Hukum Newton dan gaya gesek khusus untuk bidang miring kasar. Oleh karena itu, sebelum kita mulai ke pembahasan soal, ada baiknya kita ingat-ingat kembali ringkasan materi tentang Hukum Newton dan gaya gesek berikut ini. Konsep Hukum Newton Hukum I Newton Hukum II Newton Hukum III Newton F = 0 F = ma Faksi = −Freaksi Keadaan benda diam v = 0 m/s bergerak lurus beraturan atau GLB v = konstan Keadaan benda benda bergerak lurus berubah beraturan atau GLBB v ≠ konstan Sifat gaya aksi reaksi sama besar berlawanan arah terjadi pada 2 objek berbeda Konsep Gaya Gesek Gaya Gesek Statis Gaya Gesek Kinetis fs = μs N fk = μk N Bekerja pada benda diam v = 0 m/s tepat akan bergerak fs maksimum Bekerja pada benda bergerak baik GLB maupun GLBB Hubungan Gaya Gesek dan Gerak Benda Besar Gaya Luar Keadaan Benda Jika F fs maksimum Bergerak, berlaku Hukum II Newton dan bekerja gaya gesek kinetik fk Oke, jika kalian sudah paham mengenai konsep Hukum Newton dan gaya gesek, kini saatnya kita bahas beberapa soal tentang gerak benda di bidang miring. Simak baik-baik uraian berikut ini. Contoh Soal 1 Sebuah balok yang massanya 6 kg meluncur ke bawah pada sebuah papan licin yang dimiringkan 30° dari lantai. Jika jarak lantai dengan balok 10 m dan besarnya percepatan gravitasi di tempat itu adalah 10 ms-2, maka tentukan percepatan dan waktu yang diperlukan balok untuk sampai di lantai. Jawab Diketahui m = 6 kg s = 10 m θ = 30° g = 10 m/s Ditanyakan Percepatan dan waktu. Langkah pertama untuk menyelesaikan soal yang berhubungan dengan dinamika gerak adalah menggambarkan skema ilustrasi soal beserta diagram gaya yang bekerja pada sistem seperti yang ditunjukkan pada gambar di bawah ini. Karena kondisi bidang miring adalah licin, maka tidak ada gaya gesek sehingga kita tidak perlu menguraikan resultan gaya pada sumbu-Y atau sumbu vertikal. Menurut Hukum II Newton, resultan gaya yang bekerja pada benda dalam arah sumbu-X adalah sebagai berikut. FX = ma w sin θ = ma mg sin θ = ma a = g sin θ …………… Pers. 1 Menentukan percepatan Untuk menentukan besar percepatan balok, subtitusikan nilai-nilai yang diketahui dalam soal ke persamaan 1 sebagai berikut. a = g sin θ a = 10sin 30° a = 100,5 a = 5 m/s2 jadi, balok tersebut meluncur ke bawah dengan percepatan sebesar 5 m/s2. Important Rumus percepatan pada persamaan 1 berlaku untuk semua gerak benda di bidang miring licin tanpa gaya luar. Menentukan waktu untuk sampai di lantai Untuk menentukan waktu yang diperlukan balok untuk mencapai lantai, kita gunakan rumus jarak pada gerak lurus berubah beraturan atau GLBB. Kenapa GLBB bukan GLB?. s = v0t + ½ at2 karena tidak ada keterangan mengenai kecepatan awal, maka v0 = 0 sehingga s = ½ at2 t2 = 2s/a t = √2s/a …………… Pers. 2 Subtitusikan besar percepatan dan nilai yang diketahui dalam soal ke persamaan 2 t = √[210/5] t = √20/5 t = √4 t = 2 m/s2 Dengan demikian, waktu yang diperlukan balok untuk sampai ke lantai adalah 2 detik. Catatan Penting Contoh Soal 2 Sebuah benda bergerak menuruni bidang yang kemiringannya 37° terhadap bidang horizontal. Apabila besar koefisien gesek kinetik 0,1, maka tentukanlah percepatan dan kecepatan benda tersebut setelah bergerak selama 4 sekon. Jawab Diketahui θ = 37° μk = 0,1 t = 4 s g = 10 m/s Ditanyakan Percepatan dan kecepatan Langkah pertama, kita gambarkan skema ilustrasi soal lengkap dengan diagram gaya yang bekerja pada sistem seperti yang diperlihatkan pada gambar di bawah ini. Berbeda dengan contoh soal sebelumnya, karena kondisi bidang miring kasar, maka resultan gaya pada sumbu-Y juga perlu diuraikan, tentunya kalian tahu alasannya. Dengan menggunakan Hukum II Newton, maka resultan gaya yang bekerja pada benda adalah sebagai berikut. Resultan Gaya pada Sumbu-Y FY = ma N – w cos θ = ma Karena tidak terjadi gerak pada arah vertikal, maka a = 0 sehingga N – w cos θ = 0 N – mg cos θ = 0 N = mg cos θ Resultan Gaya pada Sumbu-X FX = ma w sin θ – f = ma mg sin θ – μkN = ma mg sin θ – μkmg cos θ = ma a = g sin θ – μkg cos θ …………… Pers. 3 Menentukan percepatan Untuk menentukan besar percepatan benda, subtitusikan nilai-nilai yang diketahui dalam soal ke persamaan 3 sebagai berikut. a = g sin θ – μkg cos θ a = 10sin 37° – 0,110cos 37° a = 100,6 – 10,8 a = 6 – 0,8 a = 5,2 m/s2 jadi, besar percepatan benda tersebut adalah 5,2 m/s2. Important Rumus percepatan pada persamaan 3 berlaku untuk semua gerak benda di bidang miring kasar tanpa gaya luar. Menentukan kecepatan Untuk menentukan besar kecepatan setelah 4 detik, kita gunakan rumus kecepatan pada gerak lurus berubah beraturan atau GLBB sebagai berikut. v = v0 + at karena tidak ada kecepatan awal, maka v0 = 0 v = at v = 5,24 v = 20,8 m/s Dengan demikian, besar kelajuan benda setelah bergerak selama 4 detik adalah 20,8 m/s. Catatan Penting Contoh Soal 3 Sebuah balok berada pada bidang miring kasar dengan sudut kemiringan sebesar 30°. Ternyata balok tepat akan meluncur ke bawah. Jika besar percepatan gravitasi adalah 10 m/s2, tentukan koefisien gesek statis antara balok dengan bidang miring tersebut. Jawab Langsung saja kita gambarkan skema ilustrasi soal beserta garis-garis gaya yang bekerja pada balok seperti pada gambar berikut ini. Karena balok tepat akan bergerak, maka balok belum bergerak sehingga percepatannya sama dengan nol. Dengan menggunakan Hukum I Newton, kita peroleh persamaan berikut ini. FX = 0 w sin 30° – f = 0 w sin 30° – μsN = 0 mg sin 30° – μsmg cos 30° = 0 μsmg cos 30° = mg sin 30° μs cos 30° = sin 30° μs = sin 30°/cos 30° μs = tan 30° μs = 1/3 √3 Jadi, koefisien gesek statis antara benda dengan bidang miring adalah 1/3 √3. Contoh Soal 4 Sebuah peti kayu bermassa 60 kg didorong oleh seseorang dengan gaya 800 N ke atas sebuah truk menggunakan papan yang disandarkan membentuk bidang miring. Ketinggian bak truk tempat papan bersandar adalah 2 m dan panjang papan yang digunakan adalah 2,5 m. Jika peti bergerak ke atas dengan percepatan 2 m/s2 dan g = 10 m/s2 maka tentukan koefisien gesek kinetis antara peti kayu dengan papan. Jawab Diketahui m = 60 kg F = 800 N a = 2 m/s2 tinggi bak y = 2 m Panjang papan r = 2,5 m g = 10 m/s Ditanyakan Koefisien gesek kinetik Ketika peti berada di atas papan, diagram gaya-gaya yang bekerja dapat kalian lihat pada gambar berikut ini. Karena sudut kemiringan bidang tidak diketahui, maka kita perlu mengetahui panjang sisi-sisi bidang miring. Dari soal, panjang sisi yang belum diketahui adalah sisi horizontal atau bisa kita misalkan sebagai x. Dengan menggunakan Teorema Phytagoras, maka panjang x adalah sebagai berikut. x2 = r2 – y2 x2 = 2,52 – 22 x2 = 6,25 – 4 x2 = 2,25 x = √2,25 = 1,5 m langkah selanjutnya adalah kita tentukan resultan gaya yang bekerja pada sumbu-X dan sumbu-Y dengan menggunakan Hukum Newton sebagai berikut. Resultan Gaya pada Sumbu-Y FY = ma N – w cos θ = ma Karena tidak terjadi gerak pada arah vertikal, maka a = 0 sehingga N – w cos θ = 0 N – mg cos θ = 0 N = mg cos θ Resultan Gaya pada Sumbu-X FX = ma F – w sin θ – f = ma F – mg sin θ – μkN = ma F – mg sin θ – μkmg cos θ = ma μkmg cos θ = F – mg sin θ – ma μkmgx/r = F – mgy/r – ma kemudian kita masukkan nilai-nilai yang diketahui dari soal ke persamaan di atas. μk60101,5/2,5 = 800 – 60102/2,5 – 602 360μk = 800 – 480 – 120 360μk = 200 μk = 200/360 μk = 0,56 Jadi, besar koefisien gesek kinetis antara peti kayu dengan papan adalah 0,56. Catatan Penting Demikianlah artikel tentang kumpulan contoh soal dan pembahasan tentang gerak benda di bidang miring beserta gambar ilustrasi dan diagram gayanya. Semoga dapat bermanfaat untuk Anda. Apabila terdapat kesalahan tanda, simbol, huruf maupun angka dalam perhitungan mohon dimaklumi. Terimakasih atas kunjungannya dan sampai jumpa di artikel berikutnya.
Sebuahbenda bermassa 4kg, mula mula diam. sesaat kemudian benda dipukul hingga bergerak dengan percepatan 3 m.s-² . besar usaha yang diubah menjadi energi kinetik setelah 2 detik adalah.a. 6 jouleb. 12 joulec. 24 jouled. 48 joulee. 72 joule. Sebuah benda bermassa 4kg, mula mula diam. sesaat kemudian benda dipukul hingga bergerak dengan
Mahasiswa/Alumni Universitas Negeri Padang21 Juli 2022 1027Jawaban soal ini adalah 9,8my Joule. Diketahui massa balok = m tinggi bidang miring = y g = 9,8 m/s^2 Ditanya Ek = ? Jawab Soal ini dapat diselesaikan dengan konsep hukum kekekalan energi mekanik. Kita anggap bidang miring licin sehingga tidak ada gaya gesek antara balok dan bidang miring. Balok meluncur tanpa kecepatan awal sehingga energi kinetik balok di puncak bidang miring nol. Ek1 = 0 Energi potensial balok saat sampai di dasar bidang miring nol . Ep2 = 0 Energi kinetik balok saat sampai di dasar bidang miring Em1 = Em2 Ep1 + Ek1 = Ep2 + Ek2 + 0 = 0 + Ek2 Ek2 = m. 9,8. y Ek2 = 9,8my Joule Jadi besar energi kinetik balok tersebut ketika sampai di dasar bidang miring adalah 9,8my Joule.
Sebuahpartikel bermassa 5 kg,bergerak dengan kecepatan 2 m/s menumbuk partikel bermassa 8 kg yang mula-mula diam. Bila tumbukan elastik, hitung kecepatan masingmasing partikel setelah tumbukan. Sebuah silinder pejal homogen dengan jari-jari 20 cm dan massa 2 kg yang berada di puncak bidang miring yang lincin meluncur menuruni bidang miring
BerandaPerhatikan gambar berikut! Bidang miring ter...PertanyaanPerhatikan gambar berikut! Bidang miring tersebut memiliki sudut kemiringan sebesar θ . Benda dengan massa m bergerak dengan kecepatan v menuju puncak bidang miring. Percepatangravitasi benda dinyatakan dalam g . Terjadi gesekan antara benda dan bidang miring dengan koefisien gesekan sebesar yang menyebabkan bendaberhenti di puncak bidang miring. Tentukan persamaan kecepatan benda mula-mula!Perhatikan gambar berikut! Bidang miring tersebut memiliki sudut kemiringan sebesar . Benda dengan massa m bergerak dengan kecepatan v menuju puncak bidang miring. Percepatan gravitasi benda dinyatakan dalam g. Terjadi gesekan antara benda dan bidang miring dengan koefisien gesekan sebesar yang menyebabkan benda berhenti di puncak bidang miring. Tentukan persamaan kecepatan benda mula-mula! ... ... Jawabanjawaban untuk persamaan kecepatan mula-mula adalahjawaban untuk persamaan kecepatan mula-mula adalah   PembahasanDiket Dit Jawab Cari nilai kecepatan di puncak Cari nilai percepatan Maka Jadi, jawaban untuk persamaan kecepatan mula-mula adalahDiket Dit Jawab Cari nilai kecepatan di puncak Cari nilai percepatan Maka Jadi, jawaban untuk persamaan kecepatan mula-mula adalah Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!128Yuk, beri rating untuk berterima kasih pada penjawab soal!©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
Apabilabenda mula-mula berada pada ketinggian h 1, karena gaya beratnya benda bergerak vertikal ke bawah hingga ketinggian h 2 dari bidang acuan (Gambar 4.7). Gambar 4.6 Energi potensial gravitasi benda pada ketingggian h. h m mg h 1 h 2 Gambar 4.7 Energi potensial benda yang mula-mula berada pada ketinggian h1.
PembahasanDiketahui m = m E P 0 ​ = E 0 ​ h 0 ​ = h h P ​ = 4 1 ​ h Ditanya E K P ​ = ... ? Penyelesaian Energi Potensial mula-mula EP = m g h 0 ​ E 0 ​ = m g h h = m g E 0 ​ ​ Hukum kekekalan energi E P P ​ + E K P ​ = E P 0 ​ + E K 0 ​ m g h P ​ + E K P ​ = E 0 ​ + 0 E K P ​ = E 0 ​ − m g 4 1 ​ h E K P ​ = E 0 ​ − 4 1 ​ m g . m g E 0 ​ ​ E K P ​ = E 0 ​ − 4 1 ​ E 0 ​ E K P ​ = 4 3 ​ E 0 ​ Dengan demikian, energi kinetik dimiliki benda saat di titik P adalah 4 3 ​ E 0 ​ . Oleh karena itu, jawaban yang tepat adalah Ditanya Penyelesaian Energi Potensial mula-mula Hukum kekekalan energi Dengan demikian, energi kinetik dimiliki benda saat di titik P adalah . Oleh karena itu, jawaban yang tepat adalah D.
Jawabandari Pak Dimpun: W = ΔEp W = mgΔh W = 1.10.2,5 = 25J W = Δ E p W = m g Δ h W = 1.10.2, 5 = 25 J. 05. (UN 2013) Sebuah mobil bermassa 200 kg dari keadaan diam bergerak hingga mencapai kecepatan 10 m/s dan g = 10 m/s 2. Besar usaha yang dilakukan mobil tersebut adalah:
Soal no. 14 Perhatikan gambar berikut ini! Seorang penari es sketting sedang berputar di atas lantai es dengan posisi tangan menyilang di dada sehingga memiliki kecepatan sudut $\omega $. Kemudian ia merentangkan kedua tangannya hingga kecepatan sudutnya menjadi $0,5\omega $. Perbandingan energi kinetik rotasi saat tangan menyilang dan saat tangan terentang adalah … Pembahasan Misalkan energi kinetik rotasi saat tangan menyilang dinyatakan dengan $${E_o} = {\textstyle{1 \over 2}}{I_o}\omega _o^2$$ dan energi kinetik rotasi setelah tangan terentang dinyatakan dengan $${E_1} = {\textstyle{1 \over 2}}{I_1}\omega _1^2$$ sehingga $$\frac{{{E_o}}}{{{E_1}}} = \frac{{{\textstyle{1 \over 2}}{I_o}\omega _o^2}}{{{\textstyle{1 \over 2}}{I_1}\omega _1^2}} = \frac{{{I_o}{\omega ^2}}}{{{I_1}{{\left {0,5\omega } \right}^2}}} = \frac{{{I_o}}}{{0,25 \cdot {I_1}}}$$ Dalam kasus penari sketting ini, berlaku hukum kekekalan momentum sudut. Yakni, momentum sudut penari saat posisi tangan menyilang di dada sama dengan momentum sudut penari saat dia merentangkan tangannya. Misalkan momentum sudut penari saat tangannya menyilang di dada adalah Io dan momentum sudut saat tangan direntangkan adalah I1 maka $${L_o} = {L_1}\ \ \Rightarrow \ \ {I_o}{\omega _o} = {I_1}{\omega _1}\ \ \Rightarrow\ \ {I_o}\omega = 0,5{I_1}\omega $$ Diperoleh ${I_o} = 0,5{I_1}$ Substitusi Io ini ke dalam persamaan Eo/E1 sehingga diperoleh $$\frac{{{E_o}}}{{{E_1}}} = \frac{{0,5 \cdot {I_1}}}{{0,25 \cdot {I_1}}} = 2\ \ \Rightarrow \ \ {E_o} = 2{E_1}$$ Jadi, perbandingan energi kinetik rotasi saat tangan menyilang dan saat tangan terentang adalah 2 1 Soal no. 15 Sebuah pesawat ruang angkasa yang sedang mengorbit bumi pada jarak tertentu dari permukaan bumi seperti ditunjukkan pada gambar. Pada suatu saat mesin pesawat mati sehingga pesawat kehilangan tenaga secara bertahap dan keluar dari orbitnya. Maka pada posisi x arah orbit pesawat yang benar ditunjukkan oleh gambar asumsi, gesekan pesawat dan udara diabaikan… Pembahasan Sebuah benda bergerak mengorbit karena adanya gravitasi yang bertindak sebagai gaya sentripetal. Gaya sentripetal dinyatakan dengan persamaan $${F_{sp}} = m\frac{{{v^2}}}{R}$$ Dengan m adalah massa benda satelit, v adalah kecepatan linear satelit dan R adalah jejari orbit. Ketika terjadi kerusakan mesin, kecepatan linear yang dimiliki satelit akan berkurang dari nilai yang sebelumnya. Akibatnya, gaya gravitasi tidak sama lagi dengan persamaan gaya sentripetal di atas. Gaya gravitasi bernilai lebih besar sehingga seiring dengan semakin mengecilnya kecepatan satelit, satelit itu akan semakin tertarik ke arah bumi sambil tetap berputar. Jadi, lintasan satelit akan seperti pada gambar B. Soal no. 16 Perhatikan gambar berikut! Benda bermassa m mula-mula berada di puncak bidang miring dan memiliki energi potensial Eo. Benda kemudian meluncur dan sampai di titik P. Energi kinetik yang dimiliki oleh benda saat di titik P adalah … Pembahasan Dengan menggunakan hukum kekekalan energi mekanik. $${E_{P1}} + {E_{K1}} = {E_{P2}} + {E_{P2}}$$ $${E_o} = {E_{K2}} + mg\left {{\textstyle{1 \over 4}}{h_o}} \right = {E_{K2}} + {\textstyle{1 \over 4}}mg{h_o}$$ Karena Eo = mgho maka persamaan di atas dapat ditulis menjadi $${E_o} = {E_{K2}} + {\textstyle{1 \over 4}}{E_o}\ \ \Rightarrow \ \ {E_{K2}} = {\textstyle{3 \over 4}}{E_o}$$ Jadi energi kinetik balok saat berada pada ketinggian ¼ ho adalah ¾ Eo. Soal no. 17 Sebuah benda yang massanya 2 kg meluncur di atas bidang miring tanpa kecepatan awal seperti pada gambar. Balok tersebut terus meluncur pada lantai yang kasar dengan koefisien gesek 0,4. Jika percepatan gravitasi 10 maka jarak yang ditempuh balok pada lantai sampai balok berhenti adalah .. Pembahasan Secara fisis, balok akan berhenti setelah menempuh jarak tertentu di atas lantai kasar karena adanya gaya gesekan. Gaya gesekan ini melakukan usaha negatif berlawanan arah dengan arah perpindahan sehingga menyebabkan energi kinetik balok menjadi nol. Dengan demikian, kita dapat menyelesaikan soal ini dengan menggunakan teorema usaha energi kinetik. $$W = {E_{K_1}} – {E_{K_2}}$$ Dalam hal ini hanya gaya gesekan yang melakukan usaha, yaitu $${W_{f_g}} = – {f_g} \cdot s$$ Energi kinetik mula-mula adalah energi kinetik di titik Q yang dapat kita hitung dengan menerapkan hukum kekekalan energi mekanik pada bidang miring sebagai berikut $${E_{P_P}} + {E_{K_P}} = {E_{P_Q}} + {E_{K_Q}}$$ Di titik Q energi potensial sama dengan nol sedangkan di titik P energi kinetik sama dengan nol, maka $${E_{P_P}} = {E_{K_Q}}\ \ \Rightarrow\ \ {E_{K_Q}} = mgh = \left 2 \right\left {10} \right\left {0,8} \right = 16\ {\rm{joule}}$$ Dari persamaan teorema usaha-energi kinetik sebelumnya, kita dapat menuliskan $${W_{f_g}} = {E_{K_R}} – {E_{K_Q}}\ \ \Rightarrow \ \ – {f_g} \cdot s = {E_{K_R}} – {E_{K_Q}}$$ Karena benda berhenti di titik R maka energi kinetik di titik itu nol atau EKR = 0 sedangkan ${f_g} = \mu N = \mu mg$ maka $$ – \mu mg \cdot s = – {E_{K_Q}}\ \ \Rightarrow \ \ s = \frac{{{E_{K_Q}}}}{{\mu mg}} = \frac{{16}}{{\left {0,4} \right\left 2 \right\left {10} \right}} = 2\ {\rm{m}}$$ Jadi balok berhenti sejauh 2 m dari titik Q. Soal no. 18 Perhatikan gambar dari tiga peristiwa tumbukan tidak lenting berikut! Setelah tumbukan terjadi, urutan besar kecepatan benda yang ditumbuk dari kecepatan besar ke kecil adalah … A. Gambar 1, gambar 2, gambar 3 B. Gambar 1, gambar 3, gambar 2 C. Gambar 2, gambar 3, gambar 1 D. Gambar 3, gambar 1, gambar 2 E. Gambar 3, gambar 2, gambar 1 Pembahasan Dengan menggunakan hukum kekekalan momentum, kita dapat menuliskan persamaan untuk masing-masing tumbukan sebagai berikut $${m_1}{v_1} + {m_2}{v_2} = {m_1}{v’_1} + {m_2}{v’_2}$$ Untuk gambar 1 $$4mV = 4m{v’_1} + m{v’_2}\ \ \Rightarrow \ \ 4V = 4{v’_1} + {v’_2}\ \ \Rightarrow {v’_2} = 4\left {V – {v’_1}} \right$$ Untuk gambar 2 $$mV = 4m{v’_1} + m{v’_2}\ \ \Rightarrow \ \ V = 4{v’_1} + {v’_2}\ \ \Rightarrow \ \ {v’_2} = V – 4{v’_1}$$ Untuk gambar 3 $$mV = m{v’_1} + m{v’_2}\ \ \Rightarrow \ \ V = {v’_1} + {v’_2}\ \ \Rightarrow \ \ {v’_2} = V – {v’_1}$$ Dengan memperhatikan ketiga persamaan di atas dapat disimpulkan bahwa urutan besar kecepatan benda yang ditumbuk dari kecepatan besar ke kecil adalah gambar 1, gambar 3, dan gambar 2. Soal no. 19 Sebuah benda massanya 1200 gram meluncur dari suatu ketinggian tanpa kecepatan awal seperti pada gambar. Percepatan gravitasi di tempat itu 10 maka besar energi kinetik benda di titik C adalah …. Pembahasan Anggap tidak ada gesekan selama gerakan benda sehingga kita dapat menggunakan hukum kekekalan energi mekanik. Energi mekanik di posisi A = energi mekanik di posisi C $$mg{h_A} + {\textstyle{1 \over 2}}m{v_A}^2 = mg{h_C} + {\textstyle{1 \over 2}}m{v_C}^2$$ Ambil titik acuan di C sehingga hC = 0 dan hA = 3 m. Kecepatan awal di A sama dengan nol sehingga $$mg3 + 0 = 0 + {\textstyle{1 \over 2}}m{v_C}^2\ \ \Rightarrow \ \ {v_C} = \sqrt {6g} = \sqrt {60} = 2\sqrt {15}\ m/s$$ Soal no. 20 Dua ayunan balistik menggunakan peluru dengan kecepatan v1 dan v2 seperti gambar. Jika h2 = 1,5 h1 maka perbandingan kecepatan peluru 1 dan 2 adalah … Pembahasan Untuk dapat membandingkan v1 dan v2 maka kita harus menghitung kedua variabel tersebut. Soal ini adalah soal ayunan balistik. Pada peristiwa ayunan balistik, analisis dilakukan dengan membaginya ke dalam dua bagian. Pertama, saat peluru bergerak dan menumbuk balok. Pada peristiwa ini berlaku hukum kekekalan momentum. $${m_p}{v_p} + {m_b}{v_b} = {m_p}{v’_p} + {m_b}{v’_b}$$ dimana indeks p menyatakan peluru dan indeks b menyatakan balok. Kecepatan setelah tumbukan dinyatakan dengan v’. Karena kecepatan peluru sebelum tumbukan adalah v1 dan balok mula-mula dalam keadaan diam berarti v2 = 0. Selain itu, setelah tumbukan peluru masuk ke dalam balok dan bergerak bersama-sama, berarti kecepatan balok dan kecepatan peluru setelah tumbukan sama misalkan dinyatakan dengan v’, maka persamaan di atas akan menjadi $${m_p}{v_1} = {m_p} + {m_b}v’\ \ \Rightarrow\ \ v’ = \frac{{{m_p}}}{{{m_p} + {m_b}}}{v_1}\ \ …. \ 1$$ Kedua, saat peluru yang telah bersarang ke dalam balok bergerak bersama ke atas sehingga mencapai ketinggian h1 dari keadaan awalnya. Pada bagian gerak ini berlaku hukum kekekalan energi mekanik. $$mg{h_o} + {\textstyle{1 \over 2}}m{v_o}^2 = mg{h_1} + {\textstyle{1 \over 2}}m{v_1}^2$$ Dalam hal ini, m adalah massa gabungan antara balok dan peluru m1 + m2, vo adalah kecepatan balok bersama peluru peluru berada di dalam balok yang tidak lain adalah v’ dalam persamaan 1. h1 adalah tinggi yang dicapai balok dan v1 adalah kecepatan balok+peluru pada ketinggian tersebut dalam hal ini kecepatan balok+peluru pada ketinggian tersebut adalah nol. Dengan mengambil acuan ketinggian pada posisi awal balok, maka ho = 0, sehingga persamaan di atas menjadi $${\textstyle{1 \over 2}}\left {{m_p} + {m_b}} \right{\left {\frac{{{m_p}}}{{{m_p} + {m_b}}}{v_1}} \right^2} = \left {{m_p} + {m_b}} \rightg{h_1}$$ $$\frac{1}{2}\frac{{{m_p}^2}}{{\left {{m_p} + {m_b}} \right}}{v_1}^2 = \left {{m_p} + {m_b}} \rightg{h_1}\ \ \Rightarrow \ \ {v_1}^2 = 2\frac{{{{\left {{m_p} + {m_b}} \right}^2}}}{{{m_p}}}g{h_1}$$ Selanjutnya, untuk ayunan balistik kedua, analisisnya persis seperti di atas. Pada gerak bagian pertama yaitu peristiwa tumbukan antara peluru dengan balok, dengan menerapkan hukum kekekalan momentum diperoleh persamaan $${m_p}{v_2} = {m_p} + {m_b}v’\ \ \Rightarrow v’ = \frac{{{m_p}}}{{{m_p} + {m_b}}}{v_2}$$ Selanjutnya pada gerak bagian kedua, saat balok bersama peluru bergerak berayun, dengan menggunakan hukum kekekalan energi mekanik diperoleh persamaan $$\frac{1}{2}\frac{{{m_p}^2}}{{\left{{m_p} + {m_b}} \right}}{v_2}^2 = \left {{m_p} + {m_b}} \rightg{h_2}$$ Karena h2 = 1,5h1 maka $$\frac{1}{2}\frac{{{m_p}^2}}{{\left {{m_p} + {m_b}} \right}}{v_2}^2 = \left {{m_p} + {m_b}} \rightg\left{1,5{h_1}} \right\ \ \Rightarrow \ \ {v_2}^2 = 3\frac{{{{\left {{m_p} + {m_b}} \right}^2}}}{{{m_p}}}g{h_1}$$ Selanjutnya, dengan membandingkan v12 dan v22 yang telah diperoleh di atas akan didapatkan bahwa $$\frac{{{v_1}^2}}{{{v_2}^2}} = \frac{3}{2}\ \ \Rightarrow \ \ \frac{{{v_1}}}{{{v_2}}} = \frac{{\sqrt 3 }}{{\sqrt 2 }}$$ Jadi perbandingan antara v1 dan v2 adalah $\sqrt 3 \sqrt 2 $.
Sebuahbenda m=1 kg mula-mula bergerak mendatar dengan kecepatan 10 m/s kemudian di beri gaya konstan 2 newton selama 10 detik searah dengan arah gerak. Besar usaha yang telah dilakukan oleh F saat balok mencapai puncak bidang miring adalah (UM UGM 2010) 500 J; 250 J; 0-250 J-500 J; Jawaban : Jawaban : E. Sebuah benda bermassa 0,20
Percepatan benda pada bidang miring dapat dihitung dengan menerapkan hukum Newton. Di mana besar percepatan benda pada bidang miring nilainya sebanding dengan besar gaya pada benda. Besar percepatan benda pada bidang miring bergantung dari empat faktor. Keempat faktor tersebut meliputi massa benda m, sudut kemiringan bidang miring θ, gaya tarik/dorong F, dan koefisein gesek µ. Nilai percepatan gravitasi g di suatu tempat juga dapat mempengaruhi percepatan benda. Namun, karena besar nilai percepataan gravitas bumi di berbagai tempat adalah sama maka nilainya tidak begitu mempengaruhi sebagai pembanding. Besar percepatan gravitasi merupakan suatu konstanta g = 9,8 m/s2 atau sering dibulatkan dalam perhitungan menjadi g = 10 m/s2. Apa bunyi atau rumus hukum Newton yang digunakan untuk mengetahui besar percepatan? Bagaimana cara menghitung percepatan benda pada bidang miring? Sobat idschool dapat mencari tahu jawabannya melalui ulasan di bawah. Table of Contents Hukum Newton untuk Menghitung Percepatan Benda pada Bidang Miring Langkah-Langkah Menghitung Percepatan Benda pada Bidang Miring Contoh Soal dan Pembahasan Contoh 1 – Soal Menghitung Percepatan pada Bidang Miring Contoh 2 – Soal Menghitung Percepatan pada Bidang Miring Hukum Newton untuk Menghitung Percepatan Benda pada Bidang Miring Hukum Newton adalah sebuah hukum yang membahas hubungan antara gaya yang bekerja pada benda dan geraknya. Ada tiga hukum Newton yang dapat dinyatakan dalam sebuah persamaan untuk setiap hukum. Bunyi dan persamaan untuk ketiga Hukum Newton tersebut diberikan seperti berikut. Hukum I Newton ∑F = 0Jika resultan gaya yang bekerja pada benda adalah 0 N maka benda akan diam atau bergerak dengan kecepatan tetap. Hukum II Newton ∑F = maJika terdapat resultan gaya yang bekerja pada benda maka benda tersebut akan mengalami percepatan. Hukum III Newton Faksi = −FreaksiJika ada gaya aksi yang bekerja oleh benda 1 ke benda 2 maka akan terdapat gaya reaksi yag bekerja oleh benda 2 ke benda 1 yang sama tetapi arahnya berlawanan. Hukum yang digunakan untuk menghitung percepatan benda pada bidang miring adalah Hukum II Newton. Dari sana, dapat disimpulkan bahwa resultan gaya yang bekerja benda berbanding lurus dengan besar percepatan benda. Artinya, semakin besar resultan gaya maka percepatan benda akan semakin cepat. Sebaliknya, semakin kecil resultan gaya maka percepatan benda akan semakin lambat. Baca Juga Hukum Newton 1, 2, dan 3 Langkah-Langkah Menghitung Percepatan Benda pada Bidang Miring Secara ringkas, cara menentukan percepatan benda pada bidang miring dilakukan dengan tiga langkah. Ketiga langkah tersebut diberikan seperti berikut. Mengetahui gaya-gaya yang bekerja pada benda Menghitung resultan gaya yang bekerja pada benda Menentukan besar percepatan benda pada bidang miring Contoh cara menghitung percepatan benda pada bidang miring akan ditunjukkan melalui sebuah soal sederhana di bawah. Perhatikan permasalahan pada soal di bawah! Sebuah balok mula-mula diam, lalu ditarik dengan gaya F ke atas sejajar dengan bidang miring. Diketahui bahwa massa balok adalah 8 kg, koefisien gesekan µs = 0,5 dan θ = 45o percepatan gravitasi 10 m/s2. Tentukan Gaya-gaya yang bekerja pada benda Besar resultan gaya F minimum agar balok tepat akan bergerak ke atas Percepatan gerak benda karena gaya F Berdasarkan keterangan yang diberikan pada soal dapat diperoleh informasi-informasi seperti berikut. Massa balok m = 8 kg Koefisien gesek statis µs = 0,5 Sudut bidang miring terhadap bidang horizontal θ = 45o Percepatan gravitasi g = 10 m/s2 Ada empat gaya yang bekerja pada benda yaitu gaya kuasa F, normal N, berat benda w, dan gaya gesek statis fs. Gambar sistem beserta gaya-gaya yang bekerja pada benda tersebut dapat dilihat seperti gambat di bawah. Baca Juga Gerak Benda pada Bidang Miring & Cara Menentukan Gaya-Gaya Apa Saja yang Bekerja pada Benda Besar resultan gaya F minimum agar balok tepat akan bergerak ke atas sama dengan resultan wx = w sin 45o dan gaya gesek statis fs = μs N. Sehingga, sobat idschool perlu menghitung besar w berat benda dan N gaya normal terlebih dahulu. Menghitung berat benda/balok ww = m×gw = 8×10= 80 kgm/s2= 80 newton Menghitung gaya normal NN = wy = w cos 45oN = 80×1/2√2 = 40√2 newton Setelah mendapatkan nilai berat benda w dan gaya normal N, sobat idschool dapat menghitung resultan gaya F seperti yang diberikan seperti pada cara berikut. Resultan gaya F∑F = wx + fs∑F = wsin 45o + μs N= 80×1/2√2 + 0,5×40√2= 40√2 + 20√2∑F = 60√2 newton Jadi, besar resultan gaya F minimum agar balok tepat akan bergerak ke atas sama dengan 60√2 newton. Berikutnya adalah menentukan besar kecepatan gerak benda ke atas oleh gaya F= 60√2 newton. Contoh Soal dan Pembahasan Beberapa contoh soal di bawah dapat sobat idschool gunakan untuk menambah pemahaman bahasan di atas. Setiap contoh soal yang diberikan dilengkapi dengan pembahasannya. Sobat idschool dapat menggunakan pembahasan tersebut sebagai tolak ukur keberhasilan mengerjakan soal. Selamat Berlatih! Contoh 1 – Soal Menghitung Percepatan pada Bidang Miring Keterangan g = 10 m/s2 tan 37o = 3/4 Pembahasan Berdasarkan keterangan yang diberikan pada soal dapat diperoleh informasi-informasi seperti berikut. massa balok m = 5 kg sudut yang dibentuk bidang miring dengan bidang horizontal α = 37o Percepatan gravitasi g = 10 m/s2 tan 37o = 3/4 → sin 37o = 3/5 dan cos 37o = 4/5 Menghitung percepatan balok Jadi, percepatan balok tersebut adalah 6,0 m/s2. Jawaban B Contoh 2 – Soal Menghitung Percepatan pada Bidang Miring Benda bermassa 4 kg terletak pada bidang miring seperti tampak pada gambar di bawah ini. Jika koefisien gesek antara balok dan bidang miring adalah 1/5√3 dan g = 10 m/s2 maka percepatan benda adalah ….A. 8 m/s2B. 4 m/s2C. 3,2 m/s2D. 2 m/s2E. 1,2 m/s2 Pembahasan Berdasarkan keterangan yang diberikan pada soal dapat diberikan informasi-informasi seperti berikut. Massa benda m = 4 kg Koefisien gesek μk = 1/5√3 Percepatan gravitasi g = 10 m/s2 Sudut yang dibentuk bidang miring dengan bidang horizontal α = 30o Menghitung besar berat benda/balok w dan gaya normal N Berat Benda ww = m×gw = 4 × 10 = 40 newton Gaya Normal NN = w cos 30oN = 40 × 1/2√3 = 20√3 newton Besar percepatan benda pada bidang miring Jadi, besar percepatan benda adalah 2 m/s2Jawaban D Demikianlah tadi ulasan percepatan benda pada bidang miring. Terima kasih sudah mengunjungi idschooldotnet, semoga bermanfaat! Baca Juga Persamaan Tegangan Tali dan Percepatan Katrol Bergerak
CNEiN. 729dh97s59.pages.dev/334729dh97s59.pages.dev/397729dh97s59.pages.dev/234729dh97s59.pages.dev/547729dh97s59.pages.dev/506729dh97s59.pages.dev/281729dh97s59.pages.dev/565729dh97s59.pages.dev/4
benda bermassa m mula mula berada di puncak bidang miring